Challenges for paediatric ARVs development What's in the pipeline?

Marc Lallemant

Antiretroviral drug discovery

- □ 1981: AIDS
- □ 1983: HIV
- □ 1985: tests
- Virus
 - Drug targets

- copyright () The McGraw-Hill Companies, Inc. All rights reserved.
- 1987 today: 25 years of incessant antiretroviral drug discovery

The number of approved drugs decreases with children's age

Polly Clayden

2012 Pipeline report I-BASE & TAG

0–2	26	6-12	12-18	Adults	
				maraviroc	
				enfuvirtide	
				raltegravir	
				saquinavir	
			maraviroc (>16)	indinavir	
			enfuvirtide	atazanavir	
		enfuvirtide	raltegravir	darunavir	
		raltegravir	atazanavir	nelfinavir	
	raltegravir	atazanavir	darunavir	fosamprenavir	
	darunavir (>3)	darunavir	nelfinavir	ritonavir	
	tipranavir	nəlfinavir	fosamprenavir	lopinavir	
	nelfinavir	fosamprenavir	ritonavir	rilpivirine	
	fosamprenavir	ritonavir	lopinavir	delavidine	
	ritonavir	lopinavir	delavidine (>16)	etravirine	
fosamprenavir	lopinavir	etravirine	etravirine	efavirenz	
ritonavir	efavirenz	efavirenz	əfavirənz	nevirapine	
lopinavir	nevirapine	nevirapine	nevirapine	tenofovir	
nevirapine	tenofovir	tenofovir	tenofovir	zalcitabine	
zidovudine	zidovudine	zidovudine	zidovudine	zidovudine	
stavudine	stavudine	stavudine	stavudine	stavudine	
lamivudine	lamivudine	lamivudine	lamivudine	lamivudine	
emtricitabine	emtricitabine	emtricitabine	emtricitabine	emtricitabine	
didanosine	didanosine	didanosine	didanosine	didanosine	
abacavir	abacavir	abacavir	abacavir	abacavir	

TABLE 2. Pediatric FDA Antiretroviral Approvals by Age Group (Years)

Drug	Calendar years	Time in years between adult approval and PD	Manufacturer
Didanosine	1991–2001	9.9	Bristol-Myers Squibb
Lamivudine	1995–2001	5.7	GlaxoSmithKline
Saquinavir*	1995–2010	14.9	Roche
Stavudine	1995–2001	5.7	Bristol-Myers Squibb
Ritonavir	1996–2005	9.3	Abbott
Nevirapine	1996–2001	5.5	Boehringer Ingelheim
Nelfinavir	1997–2003	6.5	Agouron
Abacavir	1998	<1	GlaxoSmithKline
Lopinavir/ritonavir	2000-2007	7.5	Abbott
Emtricitabine	2003–2005	2.9	Gilead
Tipranavir	2005-2007	2.7	Boehringer Ingelheim

Pediatric indications in 2011-2012

- Darunavir (DRV) oral suspension formulations for children ages 3–<5 and >6 years unable to swallow tablets
- Raltegravir (RAL) chewable tablets for children 2–18 years old;
- Tenofovir (TDF) oral powder and tablets of for children 2–<18 years old</p>
- **Etravirine** (ETR) tablets for 6–18 years old;
- Fosamprenavir (FOS) oral suspension for children 4 weeks to <6 years old.</p>

Staggered age de-escalation studies

- ATV powder & capsules +/- RTV 3 months to 6 years of age (PRINCE1 and 2 and IMPAACT P1020A)
- EVG/COBI reduced-strength tablets and suspension in all age groups (PIP)
- **EVG/COBI/TDF/FTC** reduced strength tabs 6–18 years (PIP)
- **ETR** dispersible tablets 2 months to 6 years (P1090)
- **MVC** CCR5 antagonist oral suspension 2–8y (A4001031)
- RAL granules for suspension 6 mg/kg for less than 2 (P1066 & P1097)
- RIL 25 mg once daily 12 to18 y, more than 32 kg (PAINT), and granules 0–12 years (TMC278-C220)

ARV & TB Pipeline highlights (PIPs)

tenofovir prodrug (GS-7340) improved PK and cellular penetration, low doses (10-24 mg/d vs 300 mg/d TDF)

GS-7340/FTC/EVG/COB studied

- GS-7340/FTC/DRV/COB, first PI-based single-tablet FDC
- Dolutegravir (DTG), OD in naïve, no boosting, resistance profile distinct from raltegravir? low dose, UGT1A1 (CYP3A minor route) i.e. manageable interactions; pediatric granule formulation (p1093)

DTG/ABC/3TC (572-Trii) studied

 Bedaquiline (TMC 207) evaluated in DR-TB and DR-TB/HIV co-infected children (p1108)

Caveat 1: Registration *≠* Access

- For 95% of HIV infected children worldwide who live in Africa, Asia and Latin America access, beyond FDA tentative approval, requires:
 - In country regulatory approval
 - Country program adoption (national guidelines)
 - Affordability
 - Efficient supply chain
 - (in addition to timely HIV diagnosis and appropriate monitoring)

Caveat 2: Generic competition, IP & prices

- 100 fold price decrease of 1st line therapy in 6 years
- Will this repeat itself with newer drugs?
 - Widespread patenting in Developing Countries
 - Basic patent expiry date for ETR: 2019; RAL: 2022
- Licenses negotiated from a public health perspective through the Medicine Patent Pool may be a key mechanism

Caveat 3: Generic market fragmentation

- Advocacy to manufacturers has resulted in many formulations of the same drugs
 - Many products (45!) but few options (2 lines!) and still no adapted PI formulation
 - Top 4 (of 45) represent more than 50% of the total market value (UNITAID/CHAI)
- No demand for the WHO prequalified combination (ABC+3TC+ZDV 60/30/60mg tablet)
- Need for consolidated orders to reach manufacturer batch size

Up to 9 months delays before order are fulfilled

Caveat 4: Shrinking pediatric HIV population

Projected annual no. of newly infected children and no. receiving early HIV diagnosis and ART during infancy

GETTING TO ZERO

Beyond new drugs

Treatment optimisation: WHO Treatment 2.0

Re-formulation (improve drug bioavailability; stability; acceptability; extended release formulations)

Co-formulation (FDCs or co-blister pack)

Dose adjustment/reduction (reduce toxicity & pill burden/size)

Sequencing strategies, induction-maintenance; intensification
 NEVEREST (LPV->EFV);

✓ARROW (NNRTI+2 or 3 NRTIs-> NNRTI+2NRTIs or 3NRTIs)

Drug manufacturing process (improve synthesis/reduce cost)

Management of TB/HIV co-infection (RIF PI & NNRTI interactions)

Additional RTV to reach a 1:1 superboostin LPV/RTV ratio

Evaluation of alternative options: Rifabutin, RAL

Appropriately dosed pediatric FDCs (TB Alliance)

Adapting doses and formulations to children

- Smaller size = Smaller absolute dose
 - Growth requires a wide range of doses (difficult with solid dosage forms)
 - Dose relative to size (mg/kg, mg/m2, mg/kg^{3/4}) is not proportional and very difficult to predict
 - Developmental changes in drug absorption, distribution, metabolism, excretion, pharmacogen

Requirements for pediatric drug dosage forms

- ensure sufficient bioavailability taking into account children's particularities
 - Reach efficacy target (may undergo a maturation process; for antiretrovirals is assumed to be the same as adults)
 - Remain below toxicity target (not necessarily well known)
- contain nontoxic excipients for the age group
 - Limit of inactive ingredients per the dosing regimen
- acceptable and palatable
 - Taste/Sweetness preference differ around the world
- acceptable dose uniformity

Requirements for pediatric drug dosage forms

- easy and safe to administer
 - Flexible dosage: dispersible or chewable tablets, sprinkles, granules
 - Minimum dosing frequency
- socio-culturally acceptable (stigmatization)
- have precise and clear product information
- appropriate for caregivers / setting
 - Stability in Zone IV climatic conditions (30°C, 65 or 70% RH)
 - No clean water required for dispensing medication
 - Heat stable no refrigeration required

Breitkreutz, J. Boos, Exp. Opin. Drug Deliv. 4: 37-45 (2007)

Solid formulations

J. Breitkreutz J. Breitkreutz, T. Wessel, J. Boos, Paed. Perin. Drug Ther. (1999)

Advantages

- Nontoxic excipients
- Lower price
 - switch from liquids to solid FDCs
 = US\$100 shipment/storage
- Various options for taste masking
- Modified release options
- Stability (storage & in-use & different climates)
- Reduces storage space
- High content uniformity
- Easy administration

Acceptability of 3 mm minitabs in young children

S. Thomson , C. Tuleu, I.C.K. Wong et al., Pediatrics 123: e235-238 (2009)

Disadvantages

- Dimensions: swallowing
- Requires liquid for swallowing
- Aspiration (safety)
- Difficult dose adaption
- Varying bioavailability
- Dissolution rate impact

Solid formulations vs. liquid formulations

E. Schirm et al., Acta Paediatr. 92: 1486-1489 (2003)

From off-label use of Adult formulations to Pediatric FDCs

International Journal of STD & AIDS 2005; 16: 420-426

ORIGINAL RESEARCH ARTICLE

A drug dosage table is a useful tool to facilitate prescriptions of antiretroviral drugs for children in Thailand

M Ponnet MD¹, **K** Frederix MD¹, **W** Petdachai MD², **D** Wilson MD¹, **A** Eksaengsri MD³ and **R** Zachariah MBBS PhD⁴

¹Médecins Sans Frontières, Bangkok; ²Prachomklao Hospital, Department of Paediatrics, Petchburi; ³Technical and Information Unit, R&D Institute, Government Pharmaceutical Organization, Bangkok, Thailand; ⁴Médecins Sans Frontières, Operational Research, Medical Department, Brussels, Belgium

- □ MSF pediatric drug dosage table (splitting tablets, adding NVP)
- Weight band dosing table created by WHO experts to enable generic production of paediatric FDC
- First paediatric FDC WHO prequalified in 2008, 4 years after adult FDC.

Pediatric Fixed Dose Combinations

- Current pediatric FDCs are NVP based and have been mostly used in older children
- CHER trial
 - HIV diagnosis in the first months of life
 - treatment initiated immediately
- Change in the pediatric HIV treated population
 Higher viral load & ARV exposed viral population
- P1060 trial
 - regardless of exposure to NVP for PMTCT LPV/r superior to NVP based therapies

Switching from NVP to LPV/r first-line?

LPV/r + 2 NRTIs

Liquid only currently Bitter taste Neurotoxic excipients

- 42% ethanol
- 15% propylene glycol
 Needs cold chain
 Heavy to carry, hard to hide
 Difficult dosing
 Need for RTV super-boosting in
 TB/HIV co-infected children

NVP based ART

FDCs available Baby and junior dosing Scored tablets Can be crushed Easy dosing

Lopinavir-Ritonavir challenges

- According to the Biopharmaceutics Classification System (BCS) absorption of oral drugs predictable knowing:
 its intrinsic permeability across the intestinal mucosa
 its concentration at absorption site
 - and assuming dose form rapid dissolution
 - ≥85% API dissolution from formulated product in 30 minutes

highest dose soluble in 250 mL at pH 1 to 7.5		High solubility	Low solubility Particle size, polymorphic forms, solubility enhancers
	High permeability	ZDV, FTC	
more permeable than co-dosed drug at least 85% absorbed (WHO).	Low permeability transit time, GI transporters and metabolic enzymes	3TC, ABC	RTV, LPV
DND:			

Neplected Diseases *initiativ*

Lopinavir-Ritonavir challenges

- LPV requires RTV boosting
 - RTV is a CYP3A4 substrate and inhibitor.
 - Inhibits GI metabolism by enterocytes CYP3A4 and Pgp efflux transporters (Cmax)
 - Inhibits liver CYP3A4 and Pgp thus maintaining LPV half-life
 - Boosting effect may be affected by GI and liver enzyme maturation
- Lopinavir absorbed in the beginning portion of the GI tract
 - Effect of gastric Ph, GI development on absorption

From: Kearns GL et al. N Engl J Med 2003;349(12):1157-67.

Initial explorations

- Original LPV and RTV formulations were alcohol based (LVP/r and RTV liquid and soft gel capsules; Abbott)
- Replaced for adults and older children with LPV/r tablets (Abbott)

 Crystalline Drug
 Hot Melt Extrusion
 Solic Solution "extrudate"
 Tablets

Temp.
 Polymer

- Tablets cannot be used in young children as crushed they loose up to 50% bioavailability
- Alternative options explored by DNDi
 - Prodrugs (eg. RTV)
 - o Nano particles
 - Nano dispersions

Encouraging PK in animals Poor taste; 5 years time line (NCE)

Cipla meltrex sprinkles lopimune

Results of adult bioequivalence study presented at CROI 2012

5-

4.

3-

2-

0

0

Pharmacokinetic parameters

Table 2: Pharmacokinetic parameters of Lopinavir and Ritonavir administered as oral solution and as sprinkles.

			AUC _{o-t} (hr. µg/ml)	AUC _{0-∞} (hr. µg/ml)	C _{max} (µg/ml)	T _{max} (hr)
Γ	Lopinavir	Sprinkles	86.98 ± 19.95	92.99±21.96	6.82±1.3	6.26 ± 2.17
		Solution	84.57 ± 26.48	89.26±27.83	6.28±1.77	5.99 ± 0.65
		Ln-transformed 90 % Confidence intervals (T/R)	87.19-120.52	87.76 –122.54	91.31 – 131.02	
	Ratio of Least square means T/R	Ln-transformed	102.51	103.71	109.38	
	Ritonavir	Sprinkles	6.69 ± 2.45	6.86±2.51	0.79 ± 0.23	6.08 ± 1.95
		Solution	6.23 ± 2.22	6.38±2.24	0.77 ± 0.34	5.72 ± 0.59
		Ln-transformed 90 % Confidence intervals (T/R)	88.23-125.15	88.63-124.6	80.4 – 135.96	
	Ratio of Least square mean T/R	Ln-transformed	105.08	105.09	104.55	
	oquaro moan 1/11					

Pharmacokinetics of a novel pediatric formulation, Lopinavir/ritonavir sprinkles in healthy human subjects: A pilot study.

Jaideep A Gogtay Milind Gole Abhishek Khanna Raghu Naidu Geena Malhotra Shrinivas Purandare

Cipla Limited, Mumbai, India; Sitec Labs, India

Chapas-2/MRC study within-infants PK of LPV/r Syrup vs Sprinkles (n=14)

- Exposure LPV in sprinkles comparable to the Abbott oral solution and historical data
- High variability
 - CV%: 62-66%

Pharmacokinetics and acceptability of a new generic lopinavir/ritonavir sprinkle formulation compared with syrup/tablets in African, HIV-infected infants and children according to WHO weight-band dose recommendations.

R Keishanyu, Q Fillekes, P Kasirye, et al., on behalf of the CHAPAS 2 trial team; 4th Pediatric workshop 2012

Cipla – DNDi – MRC partnership

- DNDi has joined MRC to add to Chapas-2 the key cohort of 1 to 4 years of age
- Further develops with Cipla two LPV/r fixed dose combinations

Drugs for Neglected Diseases *initiative*

4-in-1 LPVr FDCs basic questions

- Twin sachets or LPVr + NRTIs granules of the same size in a single sachet/capsule?
 - Are all components compatible? At all ratios?
- Can all components be adequately taste masked?
- Given less than 20% loading for LPV/r and 50% for NRTIs, will the amount of excipients remain within acceptable limits?
- Will bioequivalence of all components be confirmed?
 - Consequences on the clinical development?
- What LPV/r : NRTIs ratio? What dosage strengths? For what weight bands?

Ratios, strengths, weight bands

WHO weight bands dosing is a compromise utilizing existing formulations

FDCs must assemble drugs with different metabolic pathways of different maturation kinetics

ZDV: glucuronyl transferase + renal excretion
3TC: 5% transsulfoxide; unchanged renal elimination
ABC: alcohol dehydrogenase and glucuronyl transferase
LPV: CYP3A enzymes oxidation

Which targets? Modeling exposures

LPV-AZT-3TC combination

LPV: Cmin 1 – 8 mg/L (efficacy-toxicity)

3TC: reported **AUCs** in adults (8.9 to 16.6 mg.h/L)

AZT: reported **AUC** in adults (3 to 5 mg.h/L)

- □ AUC = Fraction of dose absorbed / clearance fonction of age and weight
- Weight band dosing

Pooling existing PK data and modeling drug exposure according to age and weight bands

Preliminary results in 6 to 20 Kg

% children inside or outside therapeutic range

In summary

- 33
- Pediatric drug development is challenging, generally
- The context in which new drugs, new formulations, new combinations will be introduced cannot be ignored:
 - Shrinking pediatric population
 - Fragmented market
 - Intellectual property rights obstacles
- We need to think strategically to give HIV infected infants the best chances to reach adulthood safely while keep all their treatment options

Thank you for your attention

Drugs for Neglected Diseases *initiative*

Formulation, gastro-intestinal maturation and absorption

- Acceptability of the pediatric formulation is key
- Early gastro-intestinal maturation further modulates absorption
 - Gastric Ph (ionisation, solubility, stability, coating)
 - Gastric emptying time
 - Gastro-intestinal motility
 - Intestinal integrity

